Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Khánh Linh

tính các tích phân

1. \(\int_{\dfrac{\pi}{3}}^{\dfrac{\pi}{2}}\left(2-\cot^2x\right)dx\)

2. \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\left(\tan x+\cot x\right)^2dx\)

3. \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\left(2\tan x-3\cot x\right)^2dx\)

Akai Haruma
20 tháng 12 2017 lúc 1:19

1)

Ta có:

\(\int (2-\cot ^2x)dx=\int (2-\frac{\cos ^2x}{\sin ^2x})dx\)

\(=\int (2-\frac{1-\sin ^2x}{\sin ^2x})dx=\int (3-\frac{1}{\sin ^2x})dx=3\int dx-\int \frac{dx}{\sin ^2x}\)

\(=3x+\int d(\cot x)=3x+\cot x+c\)

\(\Rightarrow \int ^{\frac{\pi}{2}}_{\frac{\pi}{3}}(2-\cot ^2x)dx=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{3}\end{matrix}\right|(3x+\cot x+c)=\frac{\pi}{2}-\frac{\sqrt{3}}{3}\)

3)

Xét \(\int (2\tan x-3\cot x)^2dx\)

\(=\int (4\tan ^2x+9\cot ^2x-12)dx\)

\(=\int (\frac{4\sin ^2x}{\cos ^2x}+\frac{9\cos ^2x}{\sin ^2x}-12)dx\)

\(=\int (\frac{4(1-\cos ^2x)}{\cos ^2x}+\frac{9(1-\sin ^2x)}{\sin ^2x}-12)dx\)

\(=\int (\frac{4}{\cos ^2x}+\frac{9}{\sin ^2x}-25)dx\)

\(=4\int d(\tan x)-9\int d(\cot x)-25\int dx\)

\(=4\tan x-9\cot x-25x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(2\tan x-3\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(4\tan x-9\cot x-25x+c)=\frac{26\sqrt{3}}{3}-\frac{25\pi}{6}\)

 

 

Akai Haruma
20 tháng 12 2017 lúc 1:24

2)

Xét \(\int (\tan x+\cot x)^2dx=\int (\tan ^2x+\cot ^2x+2)dx\)

\(=\int (\frac{\sin ^2x}{\cos^2 x}+\frac{\cos ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1-\cos ^2x}{\cos ^2x}+\frac{1-\sin ^2x}{\sin ^2x}+2)dx\)

\(=\int (\frac{1}{\cos ^2x}+\frac{1}{\sin ^2x})dx\)

\(=\int d(\tan x)-\int d(\cot x)=\tan x-\cot x+c\)

Do đó:

\(\int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}(\tan x+\cot x)^2dx=\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|(\tan x-\cot x+c)=2\sqrt{3}-\frac{2\sqrt{3}}{3}\)


Các câu hỏi tương tự
Đinh Quốc Thịnh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hùng
Xem chi tiết
Thiên An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Thuy Linh
Xem chi tiết
Vang Anh Nguyen
Xem chi tiết
nanako
Xem chi tiết