\(C_5^0+2C_5^1+2^2C_5^2+...+2^5C_5^5\)
\(=C_5^0.1^5.2^0+C_5^1.1^4.2^1+C_5^2.1^32^2+...+C_5^5.1^0.2^5\)
\(=\left(1+2\right)^5\)
\(=3^5=243\)
\(C_5^0+2C_5^1+2^2C_5^2+...+2^5C_5^5\)
\(=C_5^0.1^5.2^0+C_5^1.1^4.2^1+C_5^2.1^32^2+...+C_5^5.1^0.2^5\)
\(=\left(1+2\right)^5\)
\(=3^5=243\)
tìm n thuộc số nguyên dương để \(C^0_n+2C^1_n+2^2C^2_n+...+2^2C^n_2=243\)
Tính \(A=2^2C^2_{90}+2^3\cdot C_{90}^3+.....+2^{89}\cdot C_{90}^{^{89}}+2^{90}\cdot C_{90}^{90}\)
\(B=C_{90}^0+2C_{90}^1+2^2C^2_{90}+....+2^{89}C_{90}^{89}+2^{90}C_{90}^{90}\) Tính B
Bài 1: Giải bất phương trình:
a) \(A^3_{x+1}+C^{x-1}_{x+1}< 14.\left(x+1\right)\)
b) \(\frac{1}{2}A^2_{2x}-A^2_x< \frac{6}{x}C^3_{x+10}\)
Bài 2: Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}C^y_x-C^{y+1}_x=0\\4C^9_x-5C^{y-1}_x=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2A^y_x+5C^y_x=90\\5A^y_x-2C^y_x=80\end{matrix}\right.\)
chứng minh rằng
\(C^0_{2n}+2^2C^2_{2n}+...+2^{2n}C^n_{2n}=\frac{3^{2n}+1}{2}\)
a, tính tổng sau S=\(C^1_{14}-2C^2_{14}+3C^2_{14}-......-14C^{14}_{14}\) b, S=\(9.2^8C^0_9-8.2^7C^1_9+7.2^6C^2_9-.......+C^8_9\)
Tìm hệ số của x4 trong khai triển Newton của biểu thức \(\left(x^2+\dfrac{2}{x}\right)^n\) ( x khác 0) biết rằng n là số nguyên dương thỏa mản đẳng thức
\(2C^1_n+3C^2_n+4C^3_n+...+\left(n+1\right)C^n_n=111\)
Tính tổng \(C^0_{2000}+2C^1_{2000}+3C^2_{2000}+.......+2001C^{2000}_{2000}\)
Rút gọn: \(S=C^0_{2n} +3^2C^2_{2n}+3^4C^4_{2n}+...+3^{2n}C^{2n}_{2n}\)
\(A=C^0_{2000}+2C^1_{2000}+3C^2_{2000}+...+2001C^{2000}_{2000}\)
Rút gọn KHÔNG DÙNG ĐẠO HÀM, TÍCH PHÂN