\(\dfrac{2^3}{3\cdot5}+\dfrac{2^3}{5\cdot7}+...+\dfrac{2^3}{101\cdot103}\)
\(=2^2\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{101\cdot103}\right)\)
\(=4\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{101}-\dfrac{1}{103}\right)\)
\(=4\cdot\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=4\cdot\dfrac{100}{309}=\dfrac{400}{309}\)