a: \(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)
=>\(2B-B=1-\dfrac{1}{2^{100}}=\dfrac{2^{100}-1}{2^{100}}\)
=>\(B=\dfrac{2^{100}-1}{2^{100}}\)
b: \(2C=1-\dfrac{1}{2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\)
=>\(3C=1-\dfrac{1}{2^{100}}=\dfrac{2^{100}-1}{2^{100}}\)
=>\(C=\dfrac{2^{100}-1}{2^{100}\cdot3}\)