*Rút gọn
1) G=\(\dfrac{2}{3}+\dfrac{2}{3^3}+\dfrac{2}{3^5}+...+\dfrac{2}{3^{99}}\)
2) H=\(\dfrac{1}{2}-\dfrac{1}{2^4}+\dfrac{1}{2^7}-\dfrac{1}{2^{16}}+...-\dfrac{1}{2^{58}}\)
3) E=\(\dfrac{-1}{3}+\left(\dfrac{-1}{3}\right)^2+\left(\dfrac{-1}{3}\right)^3+...+\left(\dfrac{-1}{100}\right)^{100}\)
Chứng minh rằng: \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)< 1
Tính: A= 1 + \(\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+....+\dfrac{100}{2^{100}}\)
Tính A = 1+\(\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)
Chứng minh rằng:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
Cho B=\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\). Chứng minh 1/15<B<1/10
\(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}.\)So sánh A với 2
10 Rút gọn:
a) A= 1+2+22+23+24+...+249+250
b) B= \(\dfrac{1}{2}+(\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4+(\dfrac{1}{2})^5+...+(\dfrac{1}{2})^{99}+(\dfrac{1}{2})^{100}\)
1 .thục hiện phép tính
\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)