A=1+2+3+4+5+...+99+100
A=\(\dfrac{100.\left(100+1\right)}{2}\)=5050
Vậy A=5050
B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(1-\dfrac{1}{100}\)=\(\dfrac{99}{100}\)
Vậy B=\(\dfrac{99}{100}\)