Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(A\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A<\(1-\dfrac{1}{100}=\dfrac{99}{100}\)(đpcm)
Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2.3},\dfrac{1}{3^2}>\dfrac{1}{3.4},...,\dfrac{1}{100^2}>\dfrac{1}{100.101}\)
A>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{100.101}\)
A>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
A>\(\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)(đpcm)
Vậy \(\dfrac{99}{100}>A>\dfrac{99}{202}\)