\(a.\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}-\sqrt{45+2.2\sqrt{2}.3\sqrt{5}+8}=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}=-4\sqrt{5}\) \(b.\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}.\sqrt{3}+3}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)