sử dụng hàm TỔNG XÍCH MA
\(\Sigma\left(\frac{x}{2^x}\right)\)=B(cho x chạy từ 3 đến 100)
B=1
A=B+1=1+1=2
cái lúc nãy giải sai rồi nhé
sử dụng hàm TỔNG XÍCH MA
\(\Sigma\left(\frac{x}{2^x}\right)\)
cho x chạy từ 2 đến 100
A=\(\frac{3}{2}\)
sử dụng hàm TỔNG XÍCH MA
\(\Sigma\left(\frac{x}{2^x}\right)\)=B(cho x chạy từ 3 đến 100)
B=1
A=B+1=1+1=2
cái lúc nãy giải sai rồi nhé
sử dụng hàm TỔNG XÍCH MA
\(\Sigma\left(\frac{x}{2^x}\right)\)
cho x chạy từ 2 đến 100
A=\(\frac{3}{2}\)
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Chứng minh A < 2
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Chứng minh A < 2
a) CM: A2= \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}>10\)
b) CM: A3= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+...+\frac{99}{100!}< 1\)
1/ Đề phía dưới phần trả lời.
2/ Tính \(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+....+\frac{100}{2^{100}}\)
tính giá trị biểu thức
A=\(\frac{\left[1+2+3+......+100\right].\left[\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right].\left[2,4.42-21.4,8\right]}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
tính
a)\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+4}\right).....\left(1-\frac{1}{1+2+3+...+20}\right)\)
b)\(\frac{\left(1+2+3+...+100\right).\left(12.3,4-6,86\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}\)
c)(18.123+9.436.2+3.5310.6):1+4+7+...+100-410)
giúp mk vs mai mk kiểm tra rồi . ai đúng mk tick nha
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Chứng minh: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...................+\frac{100}{3^{100}}< \frac{3}{4}\)
Chứng minh: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...................+\frac{100}{3^{100}}< \frac{3}{4}\)