tìm x,y,z biết rằng
a \(\frac{x}{y}\) = \(\frac{7}{3}\) và 5x - 2y = 87
b \(\frac{x}{19}\) = \(\frac{y}{21}\) và 2x - y = 34
c \(\frac{x^3}{8}\) = \(\frac{y^3}{64}\) = \(\frac{z^3}{216}\) và x2 + y2 +z2 =14
d \(\frac{2x+1}{5}\) = \(\frac{3y-2}{7}\) = \(\frac{2x+3y-1}{6x}\)
các bạn giúp mình vs mình đang cần gấp lắm .............. mai nộp oya.
\(\frac{x}{y}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{3}\Rightarrow\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\frac{5x}{35}=3\Rightarrow x=\frac{35\times3}{5}=21\)
\(\frac{2y}{6}=3\Rightarrow y=\frac{6\times3}{2}=9\)
Vậy \(x=21\) và \(y=9\)
b.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{34}{17}=2\)
\(\frac{2x}{38}=2\Rightarrow x=\frac{38\times2}{2}=38\)
\(\frac{y}{21}=2\Rightarrow y=2\times21=42\)
Vậy \(x=38\) và \(y=42\)
c.
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x=\sqrt{1}=\pm1\)
\(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y=\sqrt{\frac{16}{4}}=\sqrt{4}=\pm2\)
\(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z=\sqrt{\frac{36}{4}}=\sqrt{9}=\pm3\)
Vậy \(x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
d.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Vậy \(x=2\) và \(y=3\)
Cách 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7-6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{2}{3}\)
Chúc bạn học tốt ^^
a) \(\frac{x}{y}=\frac{7}{3}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{5x}{35}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , có :
\(\frac{5x}{35}=\frac{2y}{6}=\frac{5x-2y}{35-6}=\frac{87}{29}=3\)
\(\Rightarrow\begin{cases}\frac{5x}{35}=3\\\frac{2y}{6}=3\end{cases}\)\(\Rightarrow\begin{cases}5x=105\\2y=18\end{cases}\)\(\Rightarrow\begin{cases}x=21\\y=9\end{cases}\)
=> x = 21 ; y = 9
b), \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , có :
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\begin{cases}\frac{2x}{38}=2\\\frac{y}{21}=2\end{cases}\)\(\Rightarrow\begin{cases}x=2.38:2\\y=2.21\end{cases}\)\(\Rightarrow\begin{cases}x=38\\y=42\end{cases}\)