Tìm x,y,z biết: \(4x=3y=5z\) và \(x^2+\left(2y-3z\right)^2=836\)
Tìm x; y; z biết:
1) 2x = 3y - 2x và x + y = 14
2) 5x = 4x + 2y và x + y = -56
3) 3x + 2y = 7y - 3x và x - y = 10
4) 6x - 2y = 3y - 4x và x + y = -99
5) 7x - 2y = 5x - 3y và 2x + 3y = 20
6) 4x - 3y = 7y - 6x và 2x + 3y = 55
7) 2x = 3y = 4z - 2y và x + y + z = 45
8) 5x = 2y = 4z + y và x + y + z = 66
9) 2x = 5y = 3z - 2x và x + y + z = 62
10) 3x = 4y = 2z - x và x + y + z = 60
11) 2x = 3y - 2x = 5z và x - y + z = 99
12) 3x = 2y - 3z = 4z và x + y - z = 46
13) 2x = 3y - 2x = 4z - 3x và x - y + z = 44
14) 5x - 2y = 4y = 3z - 4y và x + y - z = 70
15) 2x - 3z = 4y - 2z = 7z và x + y + z = -99
16) 2x = 3y - 2x = 5z - 3y và x + y + z = 53
17) 3x = 4y - 2x = 7z - 4y và x + y - 2z = 10
18) 3x = 2y - 4x = 5z - 4y và x - y + x = 36
19) 5x - 3y = 4y = 3z + 10x và x + y + z = 28
20) 4x - 3z = 6y - x = z và 2x + 3y + 4z = 19
Tìm x, y, z
\(\left\{{}\begin{matrix}\dfrac{-x+2}{-5}=\dfrac{y-1}{2}=\dfrac{z+5}{3}\\-2y+4x-3z=35\end{matrix}\right.\)
Giúp mk đi, mọi ngừi ^^ (23h58p là e phải nộp ròi ah)
Giúp mình với??:(
Tìm x; y; z biết :
1) x/2 = y/3 ; y/4 = z/5 và x – y + z = 10
2) 4x = 3y ; 7y = 5z và 2x + 3y - z= 136
3) x-3/5 = y-5/1 = z+3/7 và 3x + 5y - 7z = 100
1.TÌm x,y,z biết
a.2009-\(\left|x-2009\right|\)=x
b.\(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+u-z\right|\)=0
2.Tìm các số a,b,c biết
\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)
và a+b+c = -50
Tìm x,y,z biết:
a) \(x\div2=y\div\left(-5\right)\)và \(x-y=14\)
b)\(21x=19y\) và \(x-y=-4\)
c) \(x\div y\div z=3\div5\div\left(-2\right)\)và \(5x=y+3z=124\)
d)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(^{x^2+y^2-z^2=-12}\)
e) \(5x=2y,\)\(3y=5z\) và \(x+y+z=-720\)
f)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và \(x+y+z=49\)
g) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(2x+3y-z=50\)
h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
k) \(\frac{x}{3}=\frac{y}{4},\)\(\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
P.s. Giúp mình nhé!!! Mình cần gấp!!! :(
Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Tìm x,y,z biết
a) 3x=2y,7y=5z và x +y+z =92
b) 2x=3y=5z và x+y-z=95
d) x:y:z=3:4:5 và 2x2+2y2-3z2=-100
e) \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z-1}{5}\) và x+y-z=50
g) \(\dfrac{x+y}{7}=\dfrac{x-y}{3}\)và x.y = 250
Tìm x, y, z biết
a) \(\dfrac{x}{y+z+1}\) =\(\dfrac{y}{x+y+2}=\dfrac{z}{x+y-3}\)
b)\(6\left(x-\dfrac{1}{y}\right)=3\left(y-\dfrac{1}{2}\right)=2\left(z-\dfrac{1}{x}\right)=xyz-\dfrac{1}{xyz}\)
Giúp mik nha!