Cho x,y e R t/m x2+y2=1.
Tìm max \(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
Cho Parabol (P):y=2x^2 và đường thẳng (d):y=-x+6. Biết (d) cắt (P) tại hai điểm phân biệt A(x1,y1); B(x2,y2) với x1<x2. Tính 4x2+y1
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
giải pt nghiệm nguyên sau: 1, x2+y2-8x+3y=-18
2, x+y+xy =x^2+y^2
3, x2+(x+y)^2= (x+9)^2
4, \(x^4y-x^4+2x^3-2x^2+2x-y=1\)
giải pt nghiệm nguyên dương
x2+x+1 =y2
Chị @Akai Haruma chị giúp e bài này đc k ạ
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Cho x,y,z là các số thực dương thoả mãn x2-y2+z2=xy+3yz+zx
Tìm Max P=\(\dfrac{x}{(2y+z)^{2}}+\dfrac{1}{xy(y+2z)}\)
Phân tích đa thức thành nhân tử
a) x2 + 4x – y2 + y
b) 3x2 + 6xy+ 3y2- 3z2
c) X2 – 2xy + y2 – z2 + 2zt – t2
d) 2x2 + 4x – 2 - 2y2
e) 2xy – x2 – y2 + 16
f) 2x – 2y – x2 + 2xy – y2
g) x4 + 4
h) x3 + 2x2 + 2x +1
Cho x,y,z >0 t/m x2+y2+z2=3.
C/m \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)