tìm tất cả các số nguyên dương (x,y) sao cho x2-2/xy+2 có giá trị là số nguyên
tìm tất cả các số nguyên dương (x,y) sao cho x2-2/xy+2 có giá trị là số nguyên
Cho ba số nguyên dương \(x;y;z\) và số nguyên tố \(p\) thỏa mãn đồng thời các điều kiện \(x.y=z^2\) và \(2.p=x+y+6.z\). Chứng minh rằng \(p+4x\) và \(p+4y\) đều là số chính phương .
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn rất nhiều ạ!
tìm các số nguyên dương x,y,z thảo mãn đồng thời 2 điều kiện:
(x-y.\(\sqrt[]{}\)2011)/(y-z.\(\sqrt{ }\)2011) là số hữu tỉ và x^2+y^2+z^2 là số nguyên tố
Tìm tất cả các số nguyên dương x sao cho x^3 + x^2 + 2025 là một số chính phương nhỏ hơn 10000
Tìm tất cả các nghiệm nguyên dương của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Câu 1.Cho các số thực x,y không âm thỏa mãn (x+1)(y+1)=2 .Chứng minh biểu thức sau là
số nguyên P=\(\sqrt{x^2+y^2}-\sqrt{2\left(x^2+1\right)\left(y^2+1\right)+2+xy}\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+ay=3a\\-\text{ax}+y=2-a^2\end{matrix}\right.\)(*) với a là tham số. Tìm giá trị a để hệ phương trình (*) có nghiệm duy nhất (x,y) thỏa mãn \(\dfrac{2y}{x^2+3}\) là số nguyên