Cho x,y,z là các số dương thỏa mãn các điều kiện \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(\left|x+y\right|=\left|z-1\right|\). Tìm x,y,z
Cho 2 số dương x,y thỏa mãn x+y=1.Chứng minh: \(\dfrac{x^2y}{y+\dfrac{1}{2}}+\dfrac{xy^2}{x+\dfrac{1}{2}}\) <\(\dfrac{1}{2}\)
Tìm nghiệm nguyên của phương trình \(\dfrac{5}{x}-\dfrac{y}{4}=\dfrac{1}{12}\)
Tìm x thỏa mãn: 8(x-\(\dfrac{1}{2}\))x+3=(x-\(\dfrac{1}{2}\))
TÌm x ; y ; z sao cho :
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{5}\) ( x , y , z ∈ N* )
Tìm x,y biết:
1) \(\dfrac{x}{5}=\dfrac{y}{7}\) và x+y = 48
2) \(\dfrac{x}{4}=\dfrac{y}{-7}\) và x-y=33
3) \(\dfrac{x}{y}=-\dfrac{2}{5}\) và x+y =12
4) \(\dfrac{x}{3}=\dfrac{y}{5}\) và 2x+4y=28
5) \(\dfrac{x}{y}=\dfrac{3}{16}\) và 3x-y=35
Tìm tất cả các cập số hữu tỉ (x;y) thỏa mãn x + y và \(\dfrac{1}{x}+\dfrac{1}{y}\) đồng thời là hai số nguyên dương
Cho 3 số hữu tỉ x, y, z thỏa mãn với xyz(3x + y + z)(3y + z + x)(3z + x + y) \(\neq\) 0 thỏa mãn điều kiện \(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}\). Tính giá trị biểu thức:
A = \(\left(2+\dfrac{y+z}{x}\right)\left(2+\dfrac{z+x}{y}\right)\left(2+\dfrac{x+y}{z}\right)\)
Tìm x,y,z bt
\(1.\dfrac{x}{3}=\dfrac{y}{6};4x-y=42\)
\(2.\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5};x-2y+3z=33\)
\(3.\dfrac{x}{y}=\dfrac{6}{5};x+y=121\)