1.cho p,q nguyên tố tìm x,y ∈ N*thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
2.tìm x,y ∈ Z, p nguyên tố thỏa mãn \(x^4+4=p.y^4\)
1) Tìm hai số nguyên toó sao cho bình phương của chúng có tổng là 2234.
2) Cho số nguyên dương x. Biết x và 30 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮30\)
3) Cho số nguyên dương x. Biết x và 240 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮240\)
4) Cho các số nguyên a và b thỏa mãn \(a^4+b^4⋮15\). CMR: a, b đều chia hết cho 15
5) Cho các số nguyên dương x, y sao cho \(x^2-xy+y^2⋮9\). CMR: x và y đều chia hết cho 9
Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Tìm tất cả số nguyên tố p sao cho tồn tại các số nguyên dương x, y sao cho x3 + y3 là lũy thừa của p.
Tìm các cặp số nguyên (x;y) thỏa mãn: x^4-y^4=3y^2 1
tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho tích xy đạt max
Tìm x,y nguyên để x^4+ x^2.y^2+ y^2 nguyên tố
tìm hai số nguyên dương x,y thỏa mãn (x+y)^4=40x+1
Chứng minh rằng với mọi số nguyên x, y thì :
A=(x+y)(x+2y)(x+3y)(x+4y)+y^4 là số chính phương