\(x^{10}=x^2\)
\(\Rightarrow x^{10}-x^2=0\)
\(\Rightarrow x^2.\left(x^8-1\right)=0\)
\(\Rightarrow x^2=0\) hoặc \(x^8-1=0\)
+) \(x^2=0\Rightarrow x=0\)
+) \(x^8-1=0\)
\(\Rightarrow x^8=1\)
\(\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
x10 = x2
=> x10 - x2 = 0
=> x2.(x8 - 1) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x^2=0\\x^8-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^8=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
Vậy \(x\in\left\{0;1;-1\right\}\)
x^10=x^2
=> x^10-x^2=0
=>x^8.x^2-x^2.1=0
=>x^2.(x^8-1)=0
Vậy ta có 2 trường hợp là
TH1:x^2=0
=>x^2=0^2
=>x=0
TH2:x^8-1=0
=>x^8=0+1
=>x^8=1
=>x^8=1^8
=>x=1
Vậy x ={1;0}