\(\left(x+1\right)^{x+2}=\left(x+1\right)^{x+3}\)
\(\Rightarrow\left(x+1\right)^{x+1}-\left(x+1\right)^{x+3}=0\)
\(\Rightarrow\left(x+1\right)^{x+1}.\left[1-\left(x+1\right)^2\right]=0\)
+) \(\left(x+1\right)^{x+1}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
+) \(1-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2=1\)
\(\Rightarrow x+1=\pm1\)
+ \(x+1=1\Rightarrow x=0\)
+ \(x+1=-1\Rightarrow x=-2\)
Vậy \(x\in\left\{-2;-1;0\right\}\)