\(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\left(2x-1\right)^{2012}-\left(2x-1\right)^{2010}=0\)
\(\Leftrightarrow[\left(2x-1\right)^{2010}.\left(2x-1\right)^2]-\left(2x-1\right)^{2010}=0\)\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-1\right)^2-1]=0\)
\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-1-1\right)\left(2x-1+1\right)]=0\)
\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-2\right)2x]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^{2010}\\2x\left(2x-2\right)=0\end{matrix}\right.=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\\x=1\end{matrix}\right.\)
Vậy x \(\in\left\{\dfrac{1}{2};0;1\right\}\)
\((2x-1)^{2012} = (2x-1)^{2010} \)
\(\)\(\Leftrightarrow\)\((2x-1)^{2012} - (2x-1)^{2010} = 0\)
\(\Leftrightarrow\)\((2x-1)^{2010} . [(2x-1)^{2} - 1] = 0\)
\(\Leftrightarrow\)\((2x-1)^{2010} . (2x-2).2x = 0\)
\(\Leftrightarrow\)\(4 . (2x-1)^{2010} . (x-1) . x = 0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}\left(2x-1\right)^{2010}=0\\x-1=0\\x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\\x=0\end{matrix}\right.\)
\(Vậy \) \(x= \)\(\dfrac{1}{2}\); \(x=1\) \(hay\) \(x=0\)