Cho x, y, z > 0 thỏa x + y + z = 1
Cmr: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Tìm giá trị nhỏ nhất của biểu thức:
N= ( x-z)2 + ( y-z)2 + y2 +z2 - 2xy + 2yz - 6z +15
Các bạn giúp mk với nhé! Thanks các bạn trước nha!
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
Cho x, y, z khác 0 và \(\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}+\dfrac{x^2+y^2-z^2}{2xy}=1\). Chứng minh: Trong 3 phân thức trên có 1 phân thức bằng -1 và 2 phân thức còn lại bằng 1
CMR những đẳng thức sau:
a, (x-1) (\(x^2\)+x+1)= \(x^3-1\)
b, (\(x^3+x^2y+xy^2+y^3\)) (x-y)=\(x^4-y^4\)
c,\(\left(x+y+z\right)^2=x^{ }^2+y^2+z^2+2xy+2xz+2yz\)
d,\(\left(x+y+z\right)^3=x^3+y^3+x^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Cho x, y, z là các số thưc thỏa mãn: \(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)
Tìm giá trị biểu thức A= \(x^{2018}+y^{2018}+z^{2018}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)