\(\left(x^2+y^2-2xy\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
=> x=y=-1
Bài 2: n(n+1)(n+2)
\(2x^2+2y^2-2xy+2x+2y+2=0\)
\(\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\left(x^2+y^2-2xy\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
=> x=y=-1
Bài 2: n(n+1)(n+2)
\(2x^2+2y^2-2xy+2x+2y+2=0\)
\(\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
Cho các số dương x;y;z thỏa mãn:\(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức :\(S=\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Mọi người ơi !!!
Cho mình hỏi mẹo làm các bài dạng như thế này không ạ???
\(4\left(x-3\right)y^2+2\left(x^2-4x+3\right)y+x^2-5x+24=0\)
\(\left(y+2\right)x^2-y^2-3y-1=0\\\)
\(x^2+xy+3x+2y=1\)
\(2x^2-2xy-5x+y+19=0\)
\(x^2+x\left(3y-1\right)+2y^2-5=0\)
a) rút gọn biểu thức: \(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
b) tìm x biết: \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=12\)
cho x,y,z ∈ \(Z^+\) thỏa mãn \(x^2+y^2+z^2+2xy+2x\left(z-1\right)+2y\left(z+1\right)\) là số chính phương.
Cmr: x=y
Cho các số thực x, y, z thỏa mãn \(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức \(S=\dfrac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Chứng minh đẳng thức \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)