\(2x-15=21\Rightarrow2x=36\Rightarrow x=18\)
\(2\left|x+2\right|+7=25\Rightarrow2\left|x+2\right|=18\Rightarrow\left|x+2\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}x+2=9\Rightarrow x=7\\x+2=-9\Rightarrow x=-11\end{matrix}\right.\)
\(3x+12=2x-4\)
\(\Rightarrow3x=2x-16\Rightarrow-x=16\Rightarrow x=-16\)
\(\left|2x-5\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=1\Rightarrow2x=6\Rightarrow x=3\\2x-5=-1\Rightarrow2x=4\Rightarrow x=2\end{matrix}\right.\)
\(2\left|x-5\right|+3=4\Rightarrow2\left|x-5\right|=1\Rightarrow\left|x-5\right|=0,5\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0,5\Rightarrow x=5,5\\x-5=-0,5\Rightarrow x=4,5\end{matrix}\right.\)
a. \(2x-15=21\\ \Leftrightarrow2x=36\\ \Leftrightarrow x=18\)
c. \(3x+12=2x-4\Leftrightarrow x=-16\\ \)
e. \(2\left|x-5\right|+3=4\\ 2\left|x-5\right|=1\\ \left|x-5\right|=\dfrac{1}{2}\\ \left\{{}\begin{matrix}x-5=\dfrac{1}{2}\\-\left(x-5\right)=\dfrac{1}{2}\end{matrix}\right.\\ \left\{{}\begin{matrix}x=\dfrac{11}{2}\\-x+5=\dfrac{1}{2}\end{matrix}\right.\\ \left\{{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)