Cho \(f\left(x\right)=x^3+ax^2+bx+c\) (a, b thuộc R). Biết f(x) chia cho x+1 dư -4, chia cho x-2 dư 5. Tính: \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)
Chứng minh biểu thức sau ko phụ thuộc vào x:
\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(D=5\left(3x^{n+1}-y^{n-1}\right)+3\left(x^{n+1}+5y^{n-1}\right)-5\left(3x^{n+1}+2y^{n-1}\right)\)
giải các phương trình sau :
a. (x-3)(x-4)-2.(3x-2)=\(\left(4-x\right)^2\)
b. \(\left(x+2\right)\left(x-2\right)+5x^2=\left(3x+1\right)-3x^2\)
c. \(\left(x+2\right)^3-\left(x-1\right)^3=\left(3x+1\right).\left(3x-1\right)\)
d.\(\frac{3-x}{2018}+\frac{x-1}{2020}=\frac{-x}{2021}+1\)
A= \(\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+10\right)}+...+\frac{1}{\left(x+2017\right)\left(x+2020\right)}\)
làm hộ nha mai mình kiểm tra 1 tiết rồi nhanh nên các bạn ơi....................????????????
1. phân tích đa thức thành nhân tử
\(\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)-72\)
2. tìm min của biểu thức
\(A=2x^2-x+2020\)
Bài 1: Chứng minh rằng biểu thức không phụ thuộc vào giá trị của biến
a) \(\left(x-1\right)^3-\left(x-1\right).\left(x^2+x+1\right)-3.\left(1-x\right).x\)
Bài 2: Tìm x: \(\left(x-2\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2=49\)
Bài 3: Tìm 3 số tự nhiên liên tập biết tích 2 số đầu nhỏ hơn tích hai số sau là 50.
Bài 4: Chứng minh rằng: \(\left(n-1\right).\left(n+1\right)-\left(n-7\right).\left(n-5\right)⋮12\)
GIÚP MIK VS!!!! MIK ĐAG CẦN GẤP.
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^n-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) (với n thuộc N)