\(\sqrt{\left(x-1\right)}=x-3\)
\(\Rightarrow\left|x-1\right|=\left(x-3\right)^2\)
\(\Rightarrow\left|x-1\right|=x^2-6x+9\)
+) Xét \(x\ge1\) có:
\(x-1=x^2-6x+9\)
\(\Leftrightarrow x^2-7x+10=0\)
\(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Thử lại: x = 5 ( t/m ), x = 2 ( không t/m )
+) Xét x < 1 có:
\(1-x=x^2-6x+9\)
\(\Leftrightarrow x^2+5x+8=0\)
\(\Leftrightarrow x^2+5x+\dfrac{25}{4}+\dfrac{7}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\)
Do \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}=0\) ( vô lí )
Vậy x = 5
\(\sqrt{x-1}=x-3\\ \Leftrightarrow x-1=x^2-6x+9\\ \Leftrightarrow x^2-7x+10=0\\ \Leftrightarrow x^2-2.3,5.x+\left(3,5\right)^2=\left(3,5\right)^2-10\\ \Leftrightarrow\left(x-3,5\right)^2=\dfrac{9}{4}\\\Rightarrow \left[{}\begin{matrix}x-3,5=\dfrac{3}{2}\\x-3,5=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)vậy x={2,5}
\(\sqrt{x-1}=x-3\)
ĐKXĐ: x \(\ge1\)
\(\Leftrightarrow\sqrt{x-1}^2=\left(x-3\right)^2\)
\(\Leftrightarrow x-1=x^2-6x+9\)
\(\Leftrightarrow x-1-x^2+6x-9=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow-x^2+2x+5x-10=0\)
\(\Leftrightarrow x\left(-x+2\right)-5\left(-x+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy pt có 2 nghiệm là.....
Mk nghĩ ntn ><
\(\sqrt{x-1}=x-3\) Đk: \(x-1\ge0\Leftrightarrow x\ge1\)
=> \(\left(\sqrt{x-1}\right)^2=\left(x-3\right)^2\)
\(x-1=x^2-6x+9\)
\(x-x^2+6x=9+1\)
\(7x-x^2=10\)
\(-\left(x^2-7x+10\right)=0\)
\(-\left[\left(x-5\right)\left(x-2\right)\right]=0\)
\(\left[{}\begin{matrix}x-5=0\Leftrightarrow x=0(ktm)\\x-2=0\Leftrightarrow x=2(tm)\end{matrix}\right.\)
Hình như sai rùi thì phải