a/
Vì |x - 1,5| ≥ 0
Và |2,5 - x| ≥ 0
=> Để |x - 1,5| + |2,5 - x| = 0 thì
\(\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1,5=1,5\\x=2,5-0=2,5\end{matrix}\right.\)
Vậy để |x - 1,5| + |2,5 - x| = 0 thì x = 1,5 và x = 2,5
b/ \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=0+\frac{1}{2}=\frac{1}{2}\)
Vậy: ...........
c)\(\left(x-2\right)^2=1\\ \Leftrightarrow\left(x-2\right)^2=\left(\pm1\right)^2\\ \Rightarrow x-2\in\left\{1;-1\right\}\\ \Rightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy...
d)\(\left(2x-1\right)^3=-8\\ \Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\\ \Leftrightarrow2x-1=-2\\ \Leftrightarrow x=-\frac{1}{2}\)
Vậy...