\(\left(x^2+16\right)^2-\left(16x-1\right)=0\)
\(\Leftrightarrow x^4+32x^2-16x+257=0\)
\(\Leftrightarrow x^4+24x^2+\left(8x^2-16x+8\right)+249=0\)
\(\Leftrightarrow x^4+24x^2+8\left(x-1\right)^2+249=0\)
Dễ thấy VP > 0
Vậy PT vô nghiệm
\(\left(x^2+16\right)^2-\left(16x-1\right)=0\)
\(\Leftrightarrow x^4+32x^2-16x+257=0\)
\(\Leftrightarrow x^4+24x^2+\left(8x^2-16x+8\right)+249=0\)
\(\Leftrightarrow x^4+24x^2+8\left(x-1\right)^2+249=0\)
Dễ thấy VP > 0
Vậy PT vô nghiệm
Tìm x, biết
a) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
b) \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
Tìm x, biết:
a. \(\sqrt{16x}=8;\) b. \(\sqrt{4x}=\sqrt{5};\)
c. \(\sqrt{9\left(x-1\right)}=21;\) d. \(\sqrt{4\left(1-x\right)^2}-6=0\)
\(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Chứng minh x + y = 0
\(B=\dfrac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}-2}{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}+2}\)với x > 0 rút gọn biểu thức ( cho em xin lời giải chi tiết ạ )
giải phương trình:\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)
cho 3 số thực x,y,z>0 thoả mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức :P=\(\dfrac{y^2z^2}{x\left(y^2+z^2\right)}+\dfrac{z^2x^2}{y\left(z^2+x^2\right)}+\dfrac{x^2y^2}{z\left(x^2+y^2\right)}\)
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
Giari phương trình
1) \(\sqrt{4x^2-4x+1}=5\)
2) \(\sqrt{4x-12}+\dfrac{1}{3}.\sqrt{9x-27}=4+\sqrt{x-3}\)
3) \(\sqrt{4x+8}-\sqrt{9x+18}-2\sqrt{x+2}=21\)
4)\(\left(3-2\sqrt{x}\right).\left(2+3\sqrt{x}\right)=16-6x\)
5)\(\sqrt{x^2-4}-\sqrt{x-2}=0\)