\(\dfrac{2^{2x-3}}{4^{10}}=8^3.16^5\)
=> \(2^{2x-3}:4^{10}=8^3.16^5\)
=> \(2^{2x-3}.\left(2^2\right)^{10}=\left(2^3\right)^3.\left(2^4\right)^5\)
=> \(2^{2x-3}:2^{20}=2^9.2^{20}\)
=> \(2^{2x-3}:2^{20}\) = 229
=> \(2^{2x-3-20}=2^{29}\)
\(\Leftrightarrow\) \(2x-3-20=29\)
=> \(2x-3=29+20\)=49
=> \(2x=49+3\) = 52
=> \(x=52:2\) => x=26