|(x+2014)(x-2015)| + |(x-2015)(x+2016)| = 0
<=> |x2+2014x-2015x-2014.2015| + |x2-2015x+2016x-2015.2016| = 0
<=> |x2-x-2014.2015| + |x2+x-2015.2016| = 0
\(\Leftrightarrow\left\{\begin{matrix}x^2-x-2014.2015=0\\x^2+x-2015.2016=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\left(x-1\right)=2014.2015\\x\left(x+1\right)=2015.2016\end{matrix}\right.\)<=> x=2015
Vậy ...