a.
\(\left(\frac{1}{3}\right)^2\times27=3^x\)
\(\frac{1^2}{3^2}\times3^3=3^x\)
\(3^1=3^x\)
\(x=1\)
b.
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\frac{\left(-2\right)^6}{\left(-2\right)^x}=\left(-2\right)^5\)
\(\left(-2\right)^x=\frac{\left(-2\right)^6}{\left(-2\right)^5}\)
\(\left(-2\right)^x=-2\)
\(x=1\)
c.
\(3x^2-\frac{1}{2}x=0\)
\(x\times\left(3x-\frac{1}{2}\right)=0\)
TH1:
\(x=0\)
TH2:
\(3x-\frac{1}{2}=0\)
\(3x=\frac{1}{2}\)
\(x=\frac{1}{2}\div3\)
\(x=\frac{1}{2}\times\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy x = 0 hoặc x = 1/6