`a)4x(x+1)+(3-2x)(3+2x)=15`
`<=>4x^2+4x+9-4x^2=15`
`<=>4x=6`
`<=>x=3/2`
Vậy `S={3/2}`
`b)3x(x-20012)-x+20012=0`
`<=>3x(x-20012)-(x-20012)=0`
`<=>(x-20012)(3x-1)=0`
`<=>` $\left[\begin{matrix} x=20012\\ x=\dfrac{1}{3}\end{matrix}\right.$
Vậy `S={1/3;20012}`
a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15
⇔4x2 + 4x + (9 – 4x2) = 15
⇔ 4x2 + 4x + 9 – 4x2 = 15
⇔4x = 15 – 9
⇔x=1,5
b)3x(x – 20012) – x + 20012 = 0
⇔3x(x – 20012) – (x – 20012) = 0
⇔(x – 20012)(3x – 1) = 0
⇔x – 20012 = 0 hay 3x – 1 = 0
⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)