\(\left|x+5\right|=x+5\)
\(\Rightarrow x+5\ge0\Leftrightarrow x\ge-5\)
Vậy...
Vì |x + 5| = x + 5 \(\Rightarrow\) x + 5 = x + 5
\(\Rightarrow\) 0x = 0 đúng, \(\forall\)x
\(\left|x+5\right|=x+5\Leftrightarrow\left[{}\begin{matrix}x+5=x+5\\-x-5=x+5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0=0\left(ld\right)\\2x=-10\end{matrix}\right.\Leftrightarrow x=-5\)
Vậy \(x=-5\)
Ta có: \(\left|x+5\right|=x+5\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x+5\left(x\ge-5\right)\\-x-5=x+5\left(x< -5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\-x-x=5+5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge-5\\x=-5\end{matrix}\right.\)
Vậy: \(x\ge-5\)
Vì |x + 5| = x + 5 ⇒
x + 5 = x + 5
⇒
0x = 0 đúng, ∀x
Giải:
\(\left|x+5\right|=x+5\)
Vì \(\left|x+5\right|\ge0\) nên \(x\ge-5\)