\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\\x+3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-3\end{array}\right.\)
<=> (x+3)(x2+3x+9)+(x+3)(x - 9)
<=> (x+3)(x2-3x+9+x - 9)=0
<=> (x+3)(x2-2x)=0
<=> (x+3)x(x-2)=0
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\\x=2\end{array}\right.\)
\(x^3+27+\left(x+3\right)\left(x-9\right)\)=0
\(\Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\\x-2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\\x=2\end{array}\right.\)
Vậy x=0 hoặc x=-3 hoặc x=2
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(x^3+27+x^2-9x+3x-27=0\)
\(x^3+x^2-6x=0\)
Mk làm đến đây thôi tại vì chưa học
\(x^3+27+\left(x+3\right)\left(x-9\right)=\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)\)=0
<=>\(\left(x+3\right)\left(x^2+4x\right)=0\)
<=>(x+3)x(x+4)=0
<=> \(\left[\begin{array}{nghiempt}x+3=0\\x=0\\x+4=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-3\\x=0\\x=-4\end{array}\right.\)
vậy tập nghiệm là S={0,-3,-4}
x3+27+(x+3)(x-9)=0
=> (x+3)(x2-3x+9)+(x+3)(x-9)=0
=> (x+3)(x2-3x+9+x-9)=0
=>(x+3)(x2-2x)=0
=>x(x+3)(x-2)=0
=> _x=0
|_x+3=0=>x=-3
|_ x-2=0=>x=2