\(x+1=\left(x+1\right)^2\)
\(\left(x+1\right)-\left(x+1\right)^2=0\)
\(\left(x+1\right)\left(1-x-1\right)=0\)
\(-x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(x+1=\left(x+1\right)^2\)
\(\left(x+1\right)-\left(x+1\right)^2=0\)
\(\left(x+1\right)\left(1-x-1\right)=0\)
\(-x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
tìm x biết :
2x^2-3(1-x).(x+1)=5x(x+1)
Tìm x biết: \(\left(x-1\right)^3=\left(1-x\right)^2\)
Tìm x, y,z biết rằng: \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)
Tìm x, y, z biết rằng: \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)
Bài 1: Cho biểu thức \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)
a, Rút gọn biểu thức A
b, Tìm x biết A = -3
c, Tìm x nguyên để A đạt giá trị nguyên dương
Tìm đa thức bị chia f(x) biết đa thức chia là \(x^2-x+1\)thương là x+1 và dư là 2x-1
Cho a>0. Tìm min P biết: \(P=a+\dfrac{2}{a+1}+3\); min X biết: \(X=\dfrac{a^2+1}{a-1}\)
Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}=\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của: \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương