|x+1| + |x+2| + |x+3| + |x+4| = 5x - 1
Ta có \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\\\left|x+4\right|\ge0\end{matrix}\right.\forall x\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\forall x\)
\(\Rightarrow5x-1\ge0\)
\(\Rightarrow5x\ge1\)
\(\Rightarrow x\ge\frac{1}{5}>0\)
Khi đó x+ 4 > x+ 3 > x+2 > x+1 > 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+3\right|=x+3\\\left|x+4\right|=x+4\end{matrix}\right.\)\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=x+1+x+2+x+3+x+4=4x+\left(1+2+3+4\right)=4x+10\)=> 4x + 10 = 5x - 1
=> 10 + 1 = 5x - 4x
=> x = 11
Vậy x = 11 thỏa mãn đề bài
Học tốt