\(\left(x-2\right)^4=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left[\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left[\left(x-2\right)^2-1\right]=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0^2\\\left(x-2\right)^2=1^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy .....
\(\left(x-2\right)^4=\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\Rightarrow\left(x-2\right)^2\left[\left(x-2\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-2\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy x = 2; x = 3 hoặc x = 1.
\(\left(x-2\right)^4=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-2\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\end{matrix}\right.\)
Vậy x = 1, x = 2 hoặc x = 3
\(\left(x-2\right)^4=\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)^4-\left(x-2\right)^2=0\)
\(\Rightarrow\left(x-2\right)^2\left[\left(x-2\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-2\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-2=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)