x = \(\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}\)\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
khi a+b+c = 0 thìa= -(b+c); b= -(a+c); c= -(a+b)
nên: x=\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1\)
x = \(\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}\)\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
khi a+b+c = 0 thìa= -(b+c); b= -(a+c); c= -(a+b)
nên: x=\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1\)
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Bài 1 . Cho \(\frac{a}{b}\)=\(\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 2 . Tìm A biết A = \(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
Bài 3 . tìm x, y, z biết\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y +3z =-10
Giúp mình nha mai mình có tiết kiểm tra rùi
Tìm tỉ số
1) \(\frac{x}{y}\) biết\(\frac{2x-y}{x+y}=\frac{2}{3}\)
2)\(\frac{a+b}{b+c}\) biết \(\frac{b}{a}=2;\frac{c}{b}=3\)
cho \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\) Tính \(\frac{x}{y}\)
cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) tính \(M=\frac{\left(a+b\right).\left(a+c\right).\left(b+c\right)}{a.b.c}\)
Tìm x \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
1.Tính:
\(a,A=\sqrt{12\frac{1}{4}}.\left(\frac{-2}{7}\right)^2-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{2016}{3^{2016}}\)
2. Tìm x,y,z biết:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
b) \(\sqrt{\left(x+\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
c) \(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}\) và x-2y+3z=14.
d) \(5^x+5^{x+1}+5^{x+2}=3875\).
3. a) Cho bốn số a,b,c,d>0 thỏa mãn: \(\frac{1}{c}=\frac{ }{1}2.\left(\frac{1}{b}+\frac{1}{a}\right)\)và b là trung bình cộng của a và c. Chứng minh rằng bốn số đó lập nên một tỉ lệ thức.
b) Cho tỉ lệ thức: \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) (với a,b,c,d khác 0)
Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
a) Cho \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\left(a,b,c>0\right)\). Tính giá trị của mỗi tỉ số.
b) Tìm x, y, z biết: \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và \(x+z=2y\).
tìm x thuộc z biết:
x = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
trong đó a,b,c thuộc N*
chứng minh rằng nếu a(y+z)=b(x+z)=c(x+y) với a;b;c khác nhau và khác 0 thì \(\frac{y-z}{a\left(b-c\right)}\)=\(\frac{z-x}{b\left(c-a\right)}\)=\(\frac{x-y}{c\left(a-b\right)}\)