4x2 - 4x + y2 + 10y + 26 = 0
<=> [(2x)2 - 2.2x + 1] + (y2 + 2.5y + 52) = 0
<=> (2x - 1)2 + (y + 5)2 = 0
Mà \(\left(2x-1\right)^2\ge0\forall x;\left(y+5\right)^2\ge0\forall y\)
nên \(\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-5\end{matrix}\right.\)
\(4x^2-4x+y^2+10y+26=0\)
=> \(4x^2-4x+y^2+10y+25+1=0\)
=> \(\left(4x^2-4x+1\right)+\left(y^2+10y+25\right)=0\)
=> \(\left(2x-1\right)^2+\left(y+5\right)^2=0\)
Ta thấy:
\(\left(2x-1\right)^2\ge0\)
\(\left(y+5\right)^2\ge0\)
=>\(\left(2x-1\right)^2+\left(y+5\right)^2\ge0\)
Mà \(\left(2x-1\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-5\end{matrix}\right.\)
Vậy x = \(\dfrac{1}{2}\); y = -5