\(\left|3x-2014\right|+\left|2014-3x\right|=4030\)
\(\left|3x-2014\right|+\left|-\left(2014-3x\right)\right|=4030\)
\(\left|3x-2014\right|+\left|3x-2014\right|=4030\)
\(\left|3x-2014\right|.2=4030\)
\(\left|3x-2014\right|=4030:2\)
\(\left|3x-2014\right|=2015\)
\(\Rightarrow\left\{{}\begin{matrix}3x-2014=2015\\3x-2014=-2015\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=4029\\3x=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1343\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\begin{matrix}x=1343\text{ hoặc }\\x=-\dfrac{1}{3}\end{matrix}\)