a)Ta có:
\(\left\{{}\begin{matrix}x+y=\frac{1}{3}\\y+z=\frac{-1}{4}\\z+x=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=\frac{1}{3}+\frac{-1}{4}+\frac{1}{5}\)
\(\Rightarrow2\left(x+y+z\right)=\frac{17}{60}\)
\(\Rightarrow x+y+z=\frac{17}{60}:2=\frac{17}{120}\)
\(\Rightarrow\left\{{}\begin{matrix}z=\frac{-23}{120}\\x=\frac{47}{120}\\y=\frac{-7}{120}\end{matrix}\right.\)
b)Ta có:
\(\left\{{}\begin{matrix}xy=\frac{3}{5}\\yz=\frac{4}{5}\\zx=\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow xyyzzx=\frac{3}{5}.\frac{4}{5}.\frac{3}{4}=\frac{9}{25}\)
\(\Rightarrow\left(xyz\right)^2=\frac{9}{25}\Rightarrow\left[{}\begin{matrix}xyz=\frac{3}{5}\\xyz=-\frac{3}{5}\end{matrix}\right.\)
TH1: \(xyz=\frac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}z=1\\x=\frac{3}{4}\\y=\frac{4}{5}\end{matrix}\right.\)
TH2:
\(xyz=-\frac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}z=-1\\x=-\frac{3}{4}\\y=-\frac{4}{5}\end{matrix}\right.\)