a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)-\left(3x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(2x^2-8x+3x-12\right)+\left(x^2-2x-5x+10\right)-\left(3x^2-12x-5x+20\right)=0\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10-3x^2+12x+5x-20=0\)
\(\Leftrightarrow5x-22=0\)
\(\Leftrightarrow5x=22\)
\(\Leftrightarrow x=\dfrac{22}{5}\)
Vậy \(x=\dfrac{22}{5}\)