1. Tìm TXĐ, TGT của hàm số: y=\(\sqrt{x+2}+\sqrt{2-x}\)
tìm tập xác định của hàm số
a) y = \(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
b) y = \(\sqrt{x+\sqrt{x^2-x+1}}\)
1. Tìm hàm số xác định của các hàm số sau.
a) \(y=\dfrac{x}{x^2-3x+2}\)
b)\(y=\dfrac{x-1}{2x^2-5x+2}\)
c)\(y=\dfrac{x-1}{x^3+1}\)
d) \(y=\dfrac{1}{x^4+2x^2-3}\)
e) \(y=\sqrt{x+3-2\sqrt{x+2}}\)
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
Tìm tập xác định của hàm số sau đây :
a. y=\(\dfrac{2x}{x^3-1}\) b.y=f(x)=\(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x^3+x}\)
Bải 1: Tìm tập xác định của các hàm số sau: a) 3x-2 2x+1 c) y=\sqrt{2x+1}-\sqrt{3-x} b) y= ²+2x-3 d) y= √2x+1 X f(x) Chú ý: * Hàm số cho dạng v thi f(x) * 0. ở Hàm số cho dạng y = v/(x) thì f(r) 2 0. X * Hàm số cho dạng " J7(p) thi f(x)>0.
Khảo sát sự biến thiên của hàm số sau:
a;y=f(x)=\(\sqrt{x^2+2x+3}\)
b;y=f(x)=\(\sqrt{x^2-3x+2}\)
c;y=f(x)=\(\sqrt{-5x^2+2x+3}\)
Tìm TXĐ của hs y = \(\sqrt{x+8+2\sqrt{x+7}}\) + \(\dfrac{1}{1-x}\)
tìm tập xác định của hàm số: \(y=\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)