Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Sông Hương

Tìm tổng tất cả các giá trị thực của tham số
m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số
\(y=2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x.\) song song đường thẳng  y= -4x
.

Hồng Quang
9 tháng 7 2021 lúc 22:15

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 


Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
Tâm Cao
Xem chi tiết
Ngọc Linh
Xem chi tiết
Lê Việt Hiếu
Xem chi tiết
Nguyễn Hữu Tín
Xem chi tiết
thaoanh le thi thao
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hồ Thị Phong Lan
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết