Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}\) =\(\dfrac{a+c-b}{b}\)=\(\dfrac{b+c-a}{a}\)
Tính P= \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính A = \(\dfrac{a}{b+c}+\dfrac{a+b}{c}\) ( b + c ≠ 0 )
Cho 3 số a, b , c > 0 thỏa mãn: \(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}\)
Chứng minh rằng a = b = c
a) Tìm x biết: (3x-1)6=(3x-1)4
b. Cho a,b,c là các số khác 0 sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\). Tính giá trị của biểu thức: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho ba số a,b,c thỏa mãn\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}\)
Chứng minh rằng: (a - c)3 = 8(a - b)2 . (b - c)
cho a, b ,c là 3 số thực khác 0 , thỏa mãn điều kiện : \(\dfrac{a+b-c}{c}=\dfrac{b+ c -a}{a}=\dfrac{c+a-b}{b}\) .
Tính giá trị biểu thức P = \( (1+ \dfrac{b}{a} )\) \( (1+ \dfrac{a}{c} )\) \((1+\dfrac{c}{b} )\)
Biết \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a},\)với a,b,c là các số thực khác 0.
Tính giá trị của biểu thức M= \(\dfrac{a^{2019}+b^{2019}+c^{2019}}{a^{672}b^{673}c^{674}}\).
Cho ac=b2; ab=c2; a+b+c≠0 và a,b,c là các số khác 0
Tính giá trị biểu thức: P=\(\dfrac{a^{555}}{b^{222}.c^{333}}+\dfrac{b^{555}}{c^{222}.a^{333}}+\dfrac{c^{555}}{a^{222}.b^{333}}\)