Chương 5: ĐẠO HÀM

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Ngọc

Tìm tất cả các hàm số f: Z --> Z thoả mãn \(f\left(f\left(x\right)+yf\left(x^2\right)\right)=x+x^2f\left(y\right)\) với mọi x,y thuộc Z

Nguyễn Việt Lâm
15 tháng 1 2021 lúc 15:17

Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)

Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)

Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh

Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)

\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh

Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)

Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)

\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)

\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))

Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)

Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):

- Với \(x=0\Rightarrow f\left(1\right)=1\)

- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)

- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)

Vậy \(f\left(x\right)=x\) là hàm cần tìm


Các câu hỏi tương tự
Nguyễn Thanh Giang
Xem chi tiết
Nguyễn Thanh Giang
Xem chi tiết
KP9
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết