Lời giải:
a) TXĐ: $x\in\mathbb{R}$
b) TXĐ: $x\in\mathbb{R}|x\neq 0$
c) TXĐ: $x\in\mathbb{R}|x\geq 0$
d) TXĐ: $x\in\mathbb{R}|1> x\geq -1$
Lời giải:
a) TXĐ: $x\in\mathbb{R}$
b) TXĐ: $x\in\mathbb{R}|x\neq 0$
c) TXĐ: $x\in\mathbb{R}|x\geq 0$
d) TXĐ: $x\in\mathbb{R}|1> x\geq -1$
tìm tập xác định của mỗi hàm số sau : a) \(y=\frac{1-\cos x}{2\sin x+\sqrt{2}}\) ; b) \(y=\frac{\sin\left(x-2\right)}{\cos2x-\cos x}\) ; c) \(y=\frac{\tan x}{1+\tan x}\) ; d) \(y=\frac{1}{\sqrt{3}\cos2x+1}\)
tìm tập xác định của mỗi hàm số sau :
a) y = \(\sqrt{3-\sin x}\) ; b) y = \(\frac{1-\cos x}{\sin x}\) ; c) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; d) y = \(\tan\)(2x + \(\frac{\pi}{3}\))
1.Tìm tập xác định của hàm số: y= \(\sqrt{1+sinx-2cos^2x}\)
2. Cho hàm số: y = \(\sqrt{sin^4x+cos^4x-2msinx.cosx}\)
Tìm các giá trị của m để xác định với mọi x.
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
tìm tập xác định của hàm số sau:
a, y=cot \(\left(\frac{\pi}{2}.sinx\right)\)
b, y= \(\sqrt{sinx-1}+2-cos^2x\)
c, y= \(\frac{tanx+cotx}{cos2x}\)
d, y=\(\frac{sinx-tanx}{sinx+cotx}\)
e, y=\(\frac{cotx}{cos^2x-3cosx+2}\)
tìm tập xác định của hàm số sau đây:
a)\(y=sin^{x-1}_{x+2}\)
b)\(y=\sqrt{3-2cosx}\)
c)\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
Tìm tập xác định của y=f(x)=\(\dfrac{\sin\left(3x\right)}{\tan^2\left(x\right)-1}+\sqrt{\dfrac{2-\cos\left(x\right)}{1+\cos\left(x\right)}}\)
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\) ?
Tìm tập xđ của hàm số
1. y = cos\(\sqrt{x}\)
2.y = cos\(\dfrac{x+1}{x}\)
3. y = sin\(\sqrt{\dfrac{1+x}{1-x}}\)
4.y = \(\sqrt{\dfrac{2+cosx}{1+sinx}}\)