Tìm góc giữa hai đường thẳng \(\Delta_1\) và \(\Delta_2\) trong các trường hợp sau :
a) \(\Delta_1:2x+y-4=0\) và \(\Delta_2:5x-2y+3=0\)
b) \(\Delta_1:y=-2x+4\) và \(\Delta_2:y=\dfrac{1}{2}x+\dfrac{3}{2}\)
Trong mặt phẳng tọa độ Oxy, cho các đường thẳng \(\Delta_1:x-2y-3=0\) và \(\Delta_2:x+y+1=0\). Tìm tọa độ điểm M thuộc đường thẳng \(\Delta_1\) sao cho khoảng cách từ điểm M đến đường thẳng \(\Delta_2\) bằng \(\dfrac{1}{\sqrt{2}}\)
Trong mặt phẳng tọa dộ Oxy, cho đường tròn (C) : \(\left(x-2\right)^2+y^2=\dfrac{4}{5}\) và hai đường thẳng \(\Delta_1:x-y=0\); \(\Delta_2:x-7y=0\). Xác định tọa độ tâm K và tính bán kính của đường tròn (\(C_1\)) biết đường tròn \(\left(C_1\right)\) tiếp xúc với các đường thẳng \(\Delta_1;\Delta_2\) và tâm K thuộc đường tròn (C)
Cho hai đường thẳng (d): x+2y-1=0 và d’: x-3y+2=0.Số đo góc giữa hai đường thẳng là:
A,600
B,900
C,69034''
D,450
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang ABCD với hai đáy AB, CD và CD=2AB. Gọi H là chân đường vuông góc hạ từ D xuống AC và M là trung điểm của HC. Biết tọa độ đỉnh B(5;6), phương trình đường thẳng DH: 2x-y=0, phương trình đường thẳng DM: x-3y+5=0. Tìm tọa độ các đỉnh của hình thang ABCD.
Trong mặt phẳng tọa độ Oxy, hãy xác định tọa độ đỉnh C của tam giác ABC biết rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm \(H\left(-1;-1\right)\), đường phân giác trong góc A có phương trình \(x-y+2=0\) và đường cao kẻ từ B có phương trình \(4x+3y-1=0\)
Cho đường tròn (C) có tâm I(1;2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó ta vẽ được hai tiếp tuyến với (C) tạo với nhau một góc \(60^0\) là một đường tròn. Hãy viết phương trình đường tròn đó ?
Cho đường tròn (C) : \(x^2+y^2-6x+4y-12=0\)
a) Tìm tọa độ tâm I và tính bán kính của đường tròn (C)
b) Viết phương trình tiếp tuyến \(\Delta\) của đường trìn (C) biết rằng tiếp tuyến song song với đường thẳng \(d:5x+12y+2012=0\)
Cho hai đường thẳng (d): 2x-y-2=0 và (d’): 4x-2y+6=0.Khoảng cách giữa hai đường thẳng là:
\(A,-\sqrt{5}\)
\(B,2\sqrt{5}\)
\(C\sqrt{5}\)
D.5