Gọi T là tiếp tuyến của (C) và tiếp tuyến vẽ từ M, ta có: ΔITM vuông tại T cho: IM = 2IT = 6.
Vậy tập hợp các điểm M là đường tròn tâm I, bán kính R = 6.
Phương trình đường tròn này là:
(x - 1)2 + (y - 2)2 = 36
gọi T ;P là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M đến đường tròn (C)
\(\Delta MTP\) cận tại M (t/c tt)\(\Rightarrow MO\) là tia phân giác ;đường cao ...
\(\Rightarrow\widehat{TMO}=\widehat{PMO}=60^0\left(gt\right)\)
\(\Delta TMO\) có \(\widehat{MTO}=90^0\left(tt\right)\)\(\Rightarrow\Delta TMO\) là tam giác nửa đều
\(\Rightarrow MO=2TO=2.3=6\)
vậy tập hợp những điểm M cách đều điểm I(1;2) 1 khoảng cố định=6 là đường tròn tâm I(1;2) và bán kính R=6.
PT duong tron (C') \(\left(x-1\right)^2+\left(y-2\right)^2=36\).
nhầm rồi 30 mà viết 60..uổng công quá