a) \(y+1=0\) hay \(15x+8y-112=0\)
b) \(MN=\dfrac{30}{\sqrt{34}}\)
a) \(y+1=0\) hay \(15x+8y-112=0\)
b) \(MN=\dfrac{30}{\sqrt{34}}\)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)\left(^2y+2\right)^2=9\) và đường thẳng \(d:3x-4y+m=0\). Tìm m để trên d có duy nhất một điểm P mà từ đó có thể kẻ được hai tiếp tuyến PA, PB với (C) (A, B là các tiếp điểm) sao cho tam giác PAB đều
Trong mặt phẳng tọa độ Oxy cho điểm \(M\left(2;1\right)\) :
a) Lập phương trình đường tròn (C) tiếp xúc với đường thẳng \(d:x-y-1=0\) tại điểm \(M\left(2;1\right)\) và có tâm nằm trên đường thẳng \(d':x-2y-6=0\)
b) Lập phương trình tiếp tuyến với (C) biết rằng tiếp tuyền này vuông góc với đường thẳng \(m:x-y+3=0\)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
trong mặt phẳng tọa độ Oxy cho đường tròn (c): \(x^2+y^2+2x-6y+5=0.\) gọi \(\Delta\) là tiếp tuyến của (c) tại điểm A(0;1).tìm pt tổng quát của \(\Delta\)
Trong mặt phẳng tọa độ Oxy cho hai điểm \(A\left(2;0\right);B\left(6;4\right)\). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng \(d:a-y-1=0\). Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C) và (C') ?
Cho đường tròn (C) : \(x^2+y^2-6x+4y-12=0\)
a) Tìm tọa độ tâm I và tính bán kính của đường tròn (C)
b) Viết phương trình tiếp tuyến \(\Delta\) của đường trìn (C) biết rằng tiếp tuyến song song với đường thẳng \(d:5x+12y+2012=0\)
Trong một mặt phẳng Oxy cho điểm M(6;0) và đường thẳng \(\left(\Delta\right)\) : x+2y-9=0
a,Tính khoảng cách từ M đến \(\left(\Delta\right)\)
b, Viết phương trình đường tròn tâm M và tiếp xúc với \(\left(\Delta\right)\)