\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\cdot\left(x+1\right):2}=\dfrac{2016}{2018}\\ \dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\cdot\left(x+1\right)}=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}:2\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2018}\\ \Leftrightarrow x+1=2018\\ x=2018-1\\ x=2017\)