Có tất cả bao biêu bộ ba số thực (x,y,z) thỏa mãn đồng thời các điều kiện dưới đây \(2^{\sqrt[3]{x^2}}.4^{\sqrt[3]{y^2}}.16^{\sqrt[3]{z^2}}=128\) và \(\left(xy^2+z^4\right)^2=4+\left(xy^2-z^4\right)^2\)
Dùng các tính chất của lũy thừa để chứng minh nếu số thực x thỏa mãn đẳng thức :
\(\left(x-3\right)^{2010}+\left(x-4\right)^{2012}=1\)
thì \(x=3\) hoặc \(x=4\)
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
Tính :
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0,25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
b) \(\left(0,001\right)^{-\dfrac{1}{3}}-2^{-2}.64^{\dfrac{2}{3}}-8^{-1\dfrac{1}{3}}\)
c) \(27^{\dfrac{2}{3}}-\left(-2\right)^{-2}+\left(3\dfrac{3}{8}\right)^{-\dfrac{1}{3}}\)
d) \(\left(-0,5\right)^{-4}-625^{0,25}-\left(2\dfrac{1}{4}\right)^{-1\dfrac{1}{2}}\)
Tính :
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}\)
Cho a và b là các số dương. Đơn giản các biểu thức sau :
a) \(\dfrac{a^{\dfrac{4}{3}}\left(a^{-\dfrac{1}{3}}+a^{\dfrac{2}{3}}\right)}{a^{\dfrac{1}{4}}\left(a^{\dfrac{3}{4}}+a^{-\dfrac{1}{4}}\right)}\)
b) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\)
c) \(\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(a^{\dfrac{2}{3}}+b^{\dfrac{2}{3}}-\sqrt[3]{ab}\right)\)
d) \(\left(a^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}\right):\left(2+\sqrt[3]{\dfrac{a}{b}}+\sqrt[3]{\dfrac{b}{a}}\right)\)
Cho hàm số\(y=\dfrac{1}{3}x^3+2x^2+\left(m-1\right)x+5\).Tìm điều kiện của m để hàm số đồng biến trên R
Rút gọn các biểu thức sau :
a) \(A=\left(0,04\right)^{-1,5}-\left(0,125\right)^{\frac{-2}{3}}\)
b) \(B=\left(6^{\frac{-2}{7}}\right)^{-7}-\left[\left(\left(0,2\right)^{0,75}\right)^{-4}\right]\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\left(a,b>0\right)\)
Hãy so sánh mỗi số sau với 1 :
a) \(2^{-2}\)
b) \(\left(0,013\right)^{-1}\)
c) \(\left(\dfrac{2}{7}\right)^5\)
d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}\)
e) \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}\)
g) \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}\)