Gọi số tự nhiên cần tìm là n ( 0 < n < 2002 ) , tổng các chữ số của n là S(n) > 0
Ta có : \(n+S\left(n\right)=2002\Rightarrow\begin{cases}n< 2002\\S\left(n\right)< n\end{cases}\)
Mặt khác, ta lại có : \(S\left(n\right)\le9+9+9+1=28\Rightarrow n\ge1974\)
Vậy : \(1974\le n\le2001\) . Xét n trong khoảng trên được n = 1982 và n = 2000 thoả mãn đề bài.
Gọi nn là số tự nhiên cần tìm và S(n)S(n) là tổng của nó
n+S(n)=2002n+S(n)=2002 khi đó do n<2002n<2002 nên S(n)≤1+9+9+9=28S(n)≤1+9+9+9=28
mà S(n)≡n(mod9)S(n)≡n(mod9) nên 2S(n)≡n+S(n)≡4(mod9)2S(n)≡n+S(n)≡4(mod9)
Suy ra S(n)≡2(mod9)S(n)≡2(mod9)
Xét 3 TH của S(n)S(n) là 2,11,202,11,20 là xong